Konnichiwa! I am Sapna Sinha, 4th year Chemistry student in the G-30 program. I am from India but I grew up in Japan where I found my love and appreciation for the Japanese culture, tradition and of course, the exquisite Japanese cuisine. Needless to say, the research environment in Japan is top notch and very competitive and joining the G30 program at Nagoya University was undoubtedly one of the best decisions I've made so far. The G-30 program has not only great educational standards but also gives you the opportunity to get familiar with the multinational culture that comes from the diverse group of students. Moreover, the smaller class size makes it easier to interact and discuss with the professors individually and connect with the most up to date findings in the field. In the end, on a personal note, I think Japan is a beautiful country and studying in the G30 program at NU was a lifetime experience!
School of Science

School/Stream-specific Feature
Understanding basic concepts and issues in the science of Chemistry is the dominant principle of the curriculum at the School of Science. Both teaching and research are focused on understanding nature at the atomic and molecular levels, and on using that understanding to explore the frontiers of science in Chemistry and many interdisciplinary fields. Students acquire a combination of general knowledge and advanced expertise, which is essential in both academia and industry.

Career Prospects
Many companies and academic institutions nowadays recognize that further globalization is the key to their ability to discover new opportunities in the worldwide marketplace. Our education emphasizes teamwork and leadership, problem solving, personality development and cross-cultural international communication skills, which are all indispensable for a successful international career. The top-notch research environment, which has produced two recent Nobel laureates, in combination with talented students gathered from Japan and all over the world, empowers our graduates to become young global leaders in industry, government and academia, responsible for the future trends in chemical sciences.

School of Engineering

School-specific Feature
Understanding basic chemistry, biotechnology and their scientific application are the dominant principles of the curriculum at the School of Engineering. Both teaching and research are focused on understanding nature at the atomic and molecular levels, and on using that understanding to explore the frontiers of science and engineering in applied chemistry and biotechnology. Students acquire a combination of general knowledge and advanced expertise, which is essential in both academia and industry. In the Applied Chemistry stream, students tackle advanced research from the standpoint of chemistry. Innovative technology and new principles will be built up and applied to new fields, which have not yet been covered by researchers, in organic chemistry, inorganic chemistry, analytical chemistry, and material chemistry. In the Biotechnology stream, students tackle advanced research from the standpoint of biochemistry and bioengineering. Innovative technology and new principles will be built up and applied to new fields, which have not yet been covered by researchers, in bioorganic chemistry, agricultural biology, and fermentation engineering.

Career Prospects
Graduates of the Department of Applied Chemistry or Biotechnology may go on to the Graduate Department of Applied Chemistry or Biotechnology (G30 Master and Doctoral Programs), or find employment in manufacturing, chemical, pharmaceutical, and food industries, public institutions, etc.